
Chapter –III
Monte Carlo Computations vs. 
Stochastic Simulation 

Email:- begna19mrblgo@gmail.com



Introduction

Monte Carlo simulation
 is a technique used to understand the impact of risk and uncertainty in 

financial, project management, cost, and other forecasting models. 
A Monte Carlo simulator helps one visualize most or all of the potential 
outcomes to have a better idea regarding the risk of a decision.

 Monte Carlo is an estimation procedure.
 use random numbers in some way, in order to solve a model that is 

deterministic.
 Take for instance the classic example of Monte carlo: calculating surface 

of a circle (image above). 
 The problem is clearly well defined and deterministic, there is only one 

possible outcome. Yet by sampling randomly you can approximate the 
answer.



Monte Carlo simulation

 A Monte Carlo approach to evaluation of these response distributions 
consists of the following steps:

 Model any aspect of uncertainty about either the input variables or the 
parameters of the transfer function by use of the concept of random 
variables. For example, the joint spatial distribution of the three variables 
porosity, oil saturation, and indicator of formation presence can be 
modeled by three, usually interdependent, random functions.

 Draw joint realizations (outcomes) of these random variables or 
functions. Each realization represents an alternative equal probable input 
set to the transfer function. 

 Transfer the input uncertainty through the transfer function into sets 
of response values. The histogram of the response values provides a 
probabilistic assessment of the impact of input uncertainty on that 
response.



Stochastic Simulation
 is a simulation that traces the evolution of variables 

that can change stochastically (randomly) with certain 
probabilities. 

 With a stochastic model we create a projection which 
is based on a set of random values.

 are simulations of a model that is inherently random. 
 is a tool that allows Monte Carlo analysis of spatially 

distributed input variables.
 It aims at providing joint outcomes of any set of 

dependent random variables. 



Stochastic simulation

These random variables can be
 Discrete (indicating the presence or absence of a character), such 

as facies type
 Continuous, such as porosity or permeability values
 Random sets, such as ellipses with a given distribution of size and 

aspect ratio, or shapes drawn at random from a frequency table of 
recorded shapes

 An example would be a random number generator, giving you a 
number

 between 1 and 6 representing the number of eyes on a die.
 In other words, you are simulating a random throw of the die by 

generating a random number.



Simulation of Pure Pursuit Problem

A fighter aircraft sights an enemy bomber and flies 
directly toward it, in order to catch up and destroy it.

We have to determine the attack course of the 
fighter and how long does the fighter take to 
catch up with the bomber.



Cont..

 We are given following conditions:
Both target and pursuer are flying in the same 2 
dimensional plane.

 The fighter's speed is constant that is VF.

 The target's path is known.

 Minimum distance required by the fighter to fire a 
missile at bomber is 10 units.

 If the target is not caught within given 
time t∘ (here t∘ = 12), the target escapes.

 Initial coordinates of the pursuer (fighter) are known.



Cont..

We will choose our coordinate system such that, initially target will be 

lying on the X axis and pursuer will be lying on Y axis as shown in the 

figure below.



Simulation of a pure pursuit problem - An 
example

 A fighter aircraft sights an enemy bomber and flies directly 
towards it in order to catch up bomber and destroy it.

 Pure Pursuit - The simple strategy of pursuer redirecting 
himself toward the target at fixed intervals of time, while 
the target goes on its predetermined path without making 
any effort to evade the pursuer.

 If path of the target is straight then problem can be solved 
directly using analytical techniques.

 However, if path of the target is curved then problem 
becomes more complex and cannot be solved directly but 
through simulation only.

 Conditions to simulate must be well specified first.



 Some formulae used here:

 Dist(t) = sqrt((yb(t)-yf(t))exp2+(xb(t)-xf(t))exp2)

Sin (theta) = yb(t)-yf(t) / dist(t)
Cos(theta) = xb(t) - yf(t) / dist (t)

Simulation of a pure pursuit problem -
An example



Cont..

 Given position at time 't', next position at time 't+1' is computed 
using:

Xf(t+1) = xf(t) + vf*cos(theta)
Yf(t+1) = yf(t) + vf*sin(theta)

Analytically we cannot make a long term prediction about the 
path that the fighter plane would take (given the initial position 
and path of the target).

 But by Simulation, we were able to make instant-to-instant 
predictions for as many instants as we wanted.



Cont..

We are given following conditions:
Both target and pursuer are flying in the same 2 
dimensional plane.
 The fighter's speed is constant that is VF.
 The target's path is known.
 Minimum distance required by the fighter to fire a 

missile at bomber is 10 units.
 If the target is not caught within given 

time t∘ (here t∘ = 12), the target escapes.
 Initial coordinates of the pursuer (fighter) are known.



Pursuit Algorithm

The implementation of the pure pursuit algorithm itself is 
fairly straightforward. 
The pure pursuit algorithm can be outlined as follows: -
 Determine the current location of the vehicle. 
 Find the path point closest to the vehicle. 
 Find the goal point 
 Transform the goal point to vehicle coordinates. 
 Calculate the curvature and request the vehicle to set 

the steering to that curvature. 
 Update the vehicle’s position. 



Cont..
package simulation;

public class Simulation { 

public static void main(String[] args) {

/*Co-ordinates of the bomber*/

double[] xb={80,90,99,108,116,125,133,141,151,160,169,179,180};

double[] yb={0,-2,-5,-9,-15,-18,-23,-29,-28,-25,-21,-20,-17};

/*Co_ordinates of fighter to be determined*/

double[] xf=new double[13]; 

double[] yf=new double[13]; 

xf[0]=0;

yf[0]=50;

double vf=20; //speed of fighter

boolean status=true;

double dist;

for (int t=0;t<12;t++)

{ 

dist=Math.sqrt((xb[t]-xf[t])*(xb[t]-xf[t])+(yb[t]-yf[t])*(yb[t]-yf[t]));

if(dist<=10) { status=false;

for(int i=0;i<13;i++) {

System.out.println(xf[i]+" "+yf[i]);

} 



Cont..

System.out.println("Target Destroyed at time t="+t);

break; 

}

yf[t+1]=yf[t]+vf*((yb[t]-yf[t])/dist); 

xf[t+1]=xf[t]+vf*((xb[t]-xf[t])/dist); }

if(status) { 

for(int i=0;i<13;i++) {

System.out.println(xf[i]+" "+yf[i]);

} System.out.println("Target escaped!"); 

} 

} 

}



Simulation of a Servo System

A very important application of continuous system 
simulation is in design and analysis of control 
systems. 

Let us study the behavior of a second order nonlinear 
feedback system represented by the following block 
diagram.



Simulation of a Servo System



SIMULATION OF A SERVO SYSTEM USING VAN 

DER POL NON-LINEAR EQUATION
A servo system can be described by the following second order differential

equation:

(d2y/dt2) = P (1-y2)*(dy/dt) – Qy

Where P and Q are positive constants, y is the position coordinate which

is a function of the time t.

This differential equation is the well-known Van der Pol non-linear equation.

To simulate this system , this second order differential equation is to be

written as a set of two simultaneous equations of first order as follows:

By using the variable y1 in place of y, we get

dy1/dt = y2

dy2/dt = P(1- y12)* y2 - Qy1



Cont..

Assuming constants P to be 0.1 and Q =1.0 and the initial conditions to 
be y1(0)=1.0 and y2(0)=0, our equation becomes:

dy1/dt = y2
dy2/dt = 0.1(1- y12)*y2- y1

The system has been simulated for 20 seconds with a step size of 
0.001 seconds. 
That is, 20000 computations have been done. The output is printed 
once for every 100 integration steps and the same has been plotted on 
graph.
-----------------------------------------------------------------



Source code


#include < stdio.h >
#include < conio.h >
#include < math.h >
#include < stdlib.h >

void main()
{

clrscr();
float t=0,y1=1,y2=0,h=0.001,u11,u12,u21,u22,u31,u32,u41,u42;
long i;
for(i=1;i<=20000;i++)

{

 //Runge kutta’s term
u11=h*y2;
u12=h*(0.1*(1-y1*y1)*y2-y1);
u21=h*(y2+0.5*u12);
u22=h*(0.1*(1-(y1+0.5*u11)*(y1+0.5*u11))*(y2+0.5*u12)-(y1+0.5*u11));



cont

 u31=h*(y2+0.5*u22);
u32=h*(0.1*(1-(y1+0.5*u21)*(y1+0.5*u21))*(y2+0.5*u22)-

(y1+0.5*u21));
u41=h*(y2+u32);

u42=h*(0.1*(1-(y1+u31)*(y1+u31))*(y2+u32)-(y1+u31));
y1=y1+(u11+2*u21+2*u31+u41)/6;
y2=y2+(u12+2*u22+2*u32+u42)/6;
t=t+h;

if(i%100==0)
printf("%f %f %f \n", t,y1,y2)

}
getch();

}



Simulation of Chemical Reactor

In a certain chemical reaction when two substances A and B 
are brought together. 
They produce a substance C. It is known that 1 gm of A 
and 1 gm of B produce 2gms of C. 
Rate of formation of C is proportional to amounts of A and 
B present.
In addition to this forward reaction there is also a 
backward reaction decomposing C back to A and B. 
The rate of decomposition is proportional to amount of C 
present in the mixture.



Cont..

In other words at any time if a, b, c are the amounts of A, B, C the 
following differential equations express the rates of increases:

da/dt= k2c – k1ab 

db/dt= k2c – k1ab

dc/dt= 2k1k2ab – 2k2c where k1, k2 are rate constants

The constants k1, k2 vary with temperature and pressure. 

Given k1, k2 and initial quantities of A and B we wish to determine 
how much of C has been produced at any time. 

Such determinations of rates of chemical reactions are important in 
many industrial applications.



Simulation of Chemical Reactor



Simulation of Single Server

Note: for academic purpose, all the computations (i.e. computation of 
Cumulative Arrival Time,Cumulative Departure Time, Queue Length, Idle 
Time and Waiting Time) have been carried out using different loops.

Abbreviations used:at: Arrival Time, st: Service Time, cat: Cumulative 
Arrival Time, cdt: Cumulative Departure Time, ql: Queue Length, idt: Idle 
Time, wt: Waiting Time.

Assumptions: Time gap between the arrival of any two consecutive 
customers (at) is between 5 to 30 minutes

Service Time is from 5 to 35 minutes

Simulation has been done for 20 customers



Cont.
#include < stdio.h >
#include < conio.h >
#include < math.h >
#include < stdlib.h >
void main()
{

clrscr();
int at[20],st[20],cat[20],cdt[20],ql[20],idt[20],wt[20];
int i,j,k;
cat[0]=0,wt[0]=0,idt[0]=0;
randomize();
for(k=0;k<=19;k++)
{
at[k]=(5+rand()%25);
st[k]=(5+rand()%30);
ql[k]=0;

}
at[0]=0;
cdt[0]=st[0];
for(j=1;j<=19;j++)
{

cat[j]=cat[j-1]+at[j];
if(cat[j]<=cdt[j-1])

cdt[j]=cdt[j-1]+st[j];
else



Cont..

cdt[j]=cat[j]+st[j];
k=j-1;
while(cdt[k] > cat[j] && k>=0)
{
ql[j]=ql[j]+1;
k=k-1;

}
if(cat[j]<=cdt[j-1])
{
wt[j]=cdt[j-1]-cat[j];
idt[j]=0;

}
else
{

idt[j]=cat[j]-cdt[j-1];
wt[j]=0;

}
}



Cont..

printf(" AT ST CAT CDT QL IDT WT \n\n\n");
for(k=0;k<=19;k++)
{
printf("%3d %3d %3d %3d %3d %3d %3d",at[k],st[k],cat[k],c

dt[k],ql[k],idt[k],wt[k]);
printf("\n\n");
}

getch();
}



Multi Server Queue

 As the name suggests, the system consists of multiple 
servers and a common queue for all items.

 When any item requests for the server, it is allocated if 
at-least one server is available. 

 Else the queue begins to start until the server is free. 
 In this system, we assume that all servers are identical, 

i.e. there is no difference which server is chosen for 
which item.



Multi Server Queue

 There is an exception of utilization. Let N be the 
identical servers, then ρ is the utilization of each 
server. 

 Consider Nρ to be the utilization of the entire 
system; then the maximum utilization 
is N*100%, and the maximum input rate is −

λmax=NTsλmax=NTs



Simulation Of Inventory Model

 The Inventory management is one of the crucial aspects for any 
manufacturing firm and well known topic in both corporate and 
academic world.

 Inventory management involves a set of decisions that aim at 
matching existing demand with the supply of products and 
materials over space and time.

 Inventory management is important because it can give answer 
to firms about when to order, how much to order and how much 
stock to keep as safety stock.

 Another objective of inventory management is to minimize cost 
while maintaining acceptable service level.



Simulation Of Inventory Model

 Inventory management model selection focused on 
production and distribution environments in which 
demand and lead time tend to be more predictable.

 The software makes the use of the simulation relatively 
unstructured and interactive, so user can control the 
time and frequency of usage. 

 User can form a computer programming model for the 
existing inventory system and run simulation on it to 
predict the provable situation of the system.



Simulation Of Inventory Model

 #include < stdio.h >
#include < conio.h >
#include < math.h >
#include < stdlib.h >
void main()
{

clrscr();
int day,rday=0,flag=0, stock=80,demand,reorder;
int profit=0, cost=0;
randomize();// to initialize random numbers
printf("Initial stock is %d\n\n", stock);
printf("Day Demand Profit Cost Bal.Stock\n\n");
for(day=1; day<=30; day++)
{
if((day==(rday+3)) && flag==1)
{
stock= stock+reorder;
printf("%d units have been delivered and has been added to the stock\n\n",reorder);
printf("Current stock (on day %d) is %d\n\n", day,stock);
printf("Day Demand Profit Cost Bal. Stock\n\n");
flag=0;
}
demand=rand()%30;
if (demand<=stock)

{



Cont..


profit = profit+ demand*20;
cost=cost+(stock-demand)*2;
stock=stock-demand;
}

else
{
profit=profit+stock*20;
cost= cost+(demand-stock)*22;
stock=0;
}

printf("%d %d %d %d %d\n\n", day,demand,profit,cost,stock);
/*getch();*/
if(stock<=50 && flag==0)

{
reorder= 50+rand()%30;
cost=cost+75;
rday=day;
flag=1;
printf("Order given for %d units at the end of day %d \n\n",reorder,day);
printf("This will be delivered on day %d \n\n",day+3);
printf("Day Demand Profit Cost Bal.Stock\n\n");

}

}
printf("\n\nTotal Profit is %d\n\n", profit);
printf("Total Cost (Loss of Good Will+ Carrying Cost + Reorder Cost) is %d\n\n", cost);
getch();

}



Simulation Of A Water Reservoir System

 While simulating this system, the following 
assumptions are made:

1. Simulation is done for 60 consecutive months
2. Water received through direct Rain Fall is 

assumed to be not more than 30% of the capacity 
of the reservoir
3. Maximum water received through River Inflow 

is 130% of the capacity of the reservoir



Simulation Of A Water Reservoir 
System

4. Seepage loss is not more than 5% and 
Evaporation loss is not more than 8% of the gross 
volume of water

5. Demand is never more than the Capacity of the 
Reservoir.



Simulation Of A Water Reservoir System

#include < stdio.h >
#include < conio.h >
#include < math.h >
#include < stdlib.h >
void main()
{

clrscr();
float rain[61],rflow[61],vin[61],seep[61],evap[61],tloss[61],vnet[61];
float grossv[61],shortage[61],spill[61],vol[61],dem[61];
float dif;
int m,cap=100;
vol[0]=0;
randomize();



Simulation Of A Water Reservoir System

for(m=1;m<=60;m++)
{

rain[m] =(rand()%cap)*0.3;
rflow[m]=(rand()%cap)*1.3;
vin[m]=rain[m]+rflow[m];
grossv[m]=vol[m-1]+vin[m];
seep[m]= grossv[m]*0.05;
evap[m]=grossv[m]*0.08;
tloss[m]=seep[m]+evap[m];
dem[m]=rand()%cap;

if(tloss[m]>grossv[m])
{

shortage[m]=dem[m];
vol[m]=0;
spill[m]=0;

}



Simulation Of A Water Reservoir System

else
{
vnet[m]=grossv[m]-tloss[m];
if (dem[m]>vnet[m])

shortage[m]=dem[m]-vnet[m];
else
{
dif=vnet[m]-dem[m];
if (dif>cap)
{
spill[m]=dif-cap;
vol[m]=cap;
shortage[m]=0;

}
else
{
vol[m]=dif;
spill[m]=0;
shortage[m]=0;
}

}
}



Simulation Of A Water Reservoir System

 printf("Mon Rain Rflow Vin V[m-1] Grossv Seep Evap Tloss Vnet Dem Short 
Spill\n\n");

for(m=1;m<=60;m++)
{

printf("%2.0d %5.1f %6.1f %6.1f %6.1f %6.1f %6.1f %6.1f %5.1f %5.1f %5.1f 
%5.1f %5.1f\n\n",m,rain[m],rflow[m],vin[m],vol[m-
1],grossv[m],seep[m],evap[m],tloss[m],vnet[m],dem[m],shortage[m],spill[m]);
if((m%15)==0 &&(m<60 p=""> {
getch();
printf("Mon Rain Rflow Vin V[m-1] Grossv Seep Evap Tloss Vnet Dem Short 

Spill\n\n");
}

}
getch();

}


