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Design of Simulation Experiments

o Point of most simulation projects: running the model and trying 
to understand the results.

o Need to plan ahead how this will be done, to avoid time-
consuming inefficiencies.

o A simulation study is an experiment that needs to be designed.
o Identify purpose of the project Just one system configuration? 
o Still have issues like run length, number of runs, how to assign 

random numbers driving the simulation, interpretation of results 
Several “given” system configurations? 

o Have same questions, as well as how to compare, select, or rank 
the alternatives.

o How do changes in inputs affect outputs?
o Search for an optimal system configuration? 5/25/2019 1:08:51 AM System Simulation and Modeling 2



Design of Simulation Experiments

 Experimental design traditionally refers to physical 
experiments

 Origins in agriculture, laboratory experiments

 Can recycle most such traditional methods into 
simulation experiments

 Will discuss some of this

 Also discuss different situation in simulation, both 
broader and more specific.
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Design of Simulation Experiments

 Overall purpose, what the outputs are, random-number 
use, effects of input changes on output, optimum-
seeking

 Example questions in simulation experiment

 What model configurations, versions to run?

 What are the input factors?

 How should they be varied?

 Use the same or different random numbers across 
configurations?

 Run length?5/25/2019 1:08:51 AM System Simulation and Modeling 4



Purpose of the Project?

 Maybe obvious, but be clear, specific about ultimate 
purpose of project

 Answer can point different ways for design

 Failure to ask/answer will leave you adrift – unlikely that 
you’ll reach solid conclusions, recommendations

 Even if there’s just one model in one configuration, 
or a very few fixed cases

 Still questions on run length, number of runs, random-
number allocation, output analysis
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Purpose of the Project?

 But if there’s more general interest in how changes 
in inputs affect outputs

 Clearly, questions on which configurations to run

 And  all the single/few scenario questions above

 Especially in optimum-seeking, need to take care in 
deciding which configurations to try, ignore

 Goals, strategies often become more ambitious (or 
less ...) during project

 In designed experiments, can use results from early 
experiments to help choose later ones
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Types of goals

Cycle Goal

. Early1

2 . Next Screening

3 . Middle Sensitivity Analysis, Understanding

. Middle4 Predictive Models

5 . Later Optimization, Robust Design

Validation
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 Think ahead about what you want out of your simulations

 Most simulation software produces lots of default output

 Time-based measures, counts

 Economic-based measures (cost, value added)

 can specify or create more

 Often get averages, minima, maxima

 Easier to ignore things you have than to get 

 things you don’t have (to state the obvious ...)

 But extraneous output can significantly slow runs

Output Performance Measures?

5/25/2019 1:08:51 AM System Simulation and Modeling 8



Cont...d

 One fundamental question for output measures – time 
frame of simulation/system

 Terminating (a.k.a. transient, short-run, finitehorizon)

 There’s a natural way to start and stop a run

 Start/stop rules set by system and model, not by you

 Need to get these right – part of building a valid model

 Steady-state (a.k.a. long-run, infinite-horizon)

 Outputs defined as a limit as simulation run length →∞

 No natural way to start – system has already been 
running forever
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Cont...d

 In stochastic simulation, outputs are observations from 
(unknown) probability distributions

 Ideally, estimate the whole distribution – ambitious goal

 Usually get summary measures of output distributions

 Means (maybe too much focus on these)

 Extrema

 Variance, standard deviation

 Quantiles of output distribution

 Output desired can affect model, data structure
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How to use Random number generation

 Most simulation models are stochastic – Random 
inputs from probability distributions

 Simulation software has ways to generate 
observations from input distributions

 Rely on random-number generator

 Algorithm to produce a sequence of values that 
appear independent, uniformly distributed on [0, 1]

 RNGs are actually fixed, recursive formulae generating 
the same sequence

 Will eventually cycle, and repeat same sequence5/25/2019 1:08:51 AM System Simulation and Modeling 11



Random number generation..Cont

 RNG is controllable, so randomness in simulation 
experiment is controllable – useful?

 Controlling carefully is one way to reduce variance of 
output, without simulating more

 Part of designing simulation experiments is to 
decide how to allocate random numbers – First 

thought – independent (no reuse) throughout

 Certainly valid and simple statistically

 But gives up variance-reduction possibility
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Random number generation..Cont

 Usually takes active intervention in simulation software – New run 
always starts with same random numbers – override

 Better idea when comparing configurations
 Re-use random numbers across configurations – common random 

numbers
 Differences in output more likely due to differences in 

configurations, not because the random numbers bounced 
differently (they didn’t) – Probabilistic rationale:

 Var (A – B) = Var(A) + Var(B) – 2 Cov(A, B)
 Hopefully, Cov(A, B) > 0 under CRN
 Usually true, though (pathological) exceptions exist
 Must synchronize RN use across configurations
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Random number generation..Cont

… 15            1      12            3 

… arrival service    arrival    service

… 15            1      12            3 

… 15         12

… 1            3 …

Separate ‘arrival’ and 

‘service’ streams

… arrival arrival    service    service
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Sensitivity of Outputs to Inputs?

 Sensitivity of Outputs to Inputs?
 Simulation models involve input factors

 Quantitative – arrival rate, number of servers, pass/fail probabilities, job-
type percentages, ...

 Qualitative – queue discipline, topology of part flow, shape of process-
time distribution, ...

 Controllable vs. uncontrollable input factors – In real system, usually have both

Number of servers, queue discipline – controllable

 Arrival rate, process-time-distribution – uncontrollable – In 
simulation, everything is controllable

 Facilitates easy “what-if” experimentation
 Advantage of simulation vs. real-world experimentation
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Sensitivity of Outputs to Inputs?
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 Has been around for ~80 years
 Roots in agricultural experiments

 Terminology
 Inputs = Factors

 Outputs = Responses

 Estimate how changes in factors affect responses

 Can be used in simulation as well as physical experiments
 In simulation, have some extra opportunities

 Two-level factorial designs

Classical Experimental Design
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Cont..d
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Classical Experimental Design

Cont.
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Classical Experimental Design
Cont.

 (– R1 – R 2 + R 3 + R 4 – R 5 – R 6 + R 7 + R 8)/4

 Two-way interaction:  does the effect of one factor 
depend on the level of another?

 “Multiply” sign columns of the two factors, apply to response 
column, add, divide by 2k–1 – Interaction between factors 1 
and 3:

 (+R 1 – R 2 + R 3 – R 4 – R 5 + R 6 – R 7 + R 8)/4 

 If an interaction is present, cannot interpret main effects of 
involved factors in isolation
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Classical Experimental Design
Cont.

Example: car maintenance/repair shop
Kelton, Sadowski, Sturrock, Simulation With Arena 
,3rd ed.2004,
Outputs:
Daily profit
Daily late wait jobs=cars/day that are late for customers waiting

Inputs:
Max load=max hours/day that can be booked
Max wait=max number of customer-waiting cars/day that can be booked
Wait allowance=hours padded to predicted time in system for waiting customers.
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Classical Experimental Design
Cont.
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VRT

 Variance reduction techniques require additional 
computation in order to be implemented. 

 Not for sure whether a variance reduction 
technique will effectively reduce the variance in 
comparison with straightforward simulation. 

 Common practice is to carry out a plot experiment

 a) the antithetic variates technique and 

 (b) the control variates technique. 
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The antithetic variates technique AVT

 is a very simple technique to use and it only 
requires a few additional instructions in order to be 
implemented 

 No general guarantee of its effectiveness can be 
given 

 Therefore, a small pilot study may be useful in 
order to decide whether or not to implement this 
technique. 
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Variance Reduction Techniques VRT

 The accuracy of an estimate is proportional to 1/√ n , where n 
is the sample size. 

 One way to increase the accuracy of an estimate  increase n
 To halve the confidence interval 4n should be used

 BUT it requires long time  and expensive ( memory and cpu)

 An alternative way to increasing the estimate's accuracy is to 
reduce its variance. 
 If one can reduce the variance of an endogenously created random 

variable without disturbing its expected value, then the confidence 
interval width will be smaller, for the same amount of simulation 

 Techniques aiming at reducing the variance of a random 
variable are known as Variance Reduction Techniques 
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AVT 

 Let X be an endogenously created random variable 

 realizations of X obtained in a 
simulation run. 

 observations of X obtained in a 
second simulation run. 

 Now, let us define a new random variable 
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AVT cont.

 More specifically, let indicates the random 
variable X as observed in the ith simulation run. We have  

 Thus, the expected value of this new random variable Z is identical to 
that of X. Now, let us examine its variance. We have 
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AVT

where ρ is the correlation between X(1) and X(2)
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AVT

 In order to construct an interval estimate of E(X), we 
use random variable Z. 

 we can cause Var(Z) to become significantly less than 
Var(X). 

 This is achieved by causing ρ to become negative. 
 In the special case where the two sets of observations  

X1 and X2 are indipendent of each other we have that 
p=0 hence Var(Z)=Var(X)/2

 The antithetic variates technique attempts to introduce 
a negative correlation between the two sets of 
observations. 
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Example

 As an example, let us consider a simulation model of a single 
server queue, and let X and Y indicate the waiting time in the 
queue and the interarrival time respectively. 

 If Y is very small, then customers arrive faster and, therefore, 
the queue size gets larger. 

 The larger the queue size, the more a customer has to wait in 
the queue, i.e. X is larger. 

 On the other hand, if Y is large, then customers arrive slower 
and, hence, the queue size gets smaller. Obviously, the 
smaller the queue size, the less a customer has to wait in the 
queue, i.e., X is small. 

 Therefore, we see that X and Y can be negatively correlated. 
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Example Cont. 

 This negative correlation between these two variables can be 
created in a systematic way as follows.
 Let F(t) and G(S) be the cumulative distribution of the inter- arrival and 

service time respectively 
 Let ri and vi be pseudo-random numbers. 

 Then,  ti=F-1(ri) andsi=G-1(vi) are an interarrival and a service 
variate. These two variates can be associated with the ith simulated 
customer 

 An indication of whether the queue is tending to increase or 
decrease can be obtained by considering the difference di=ti-si. 

 This difference may be positive or negative indicating that the queue 
is going through a busy or slack period respectively 
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Ex. Contrast 

 Now, let us consider that in the second run, we 
associate pseudo-random number r’i and v’i with the 
ith simulated customer, so that  below equation has 
the opposite sign of di. 

 That is, if the queue was going through a slack (busy) 
period in the first run at the time of the ith simulated 
customer, now it goes through a busy (slack) period 

 It can be shown that this can be achieved by simply 
setting r’i = 1-ri and v’i =1-vi. 5/25/2019 1:08:51 AM System Simulation and Modeling 32



Cont..d

 We make use of two controllable variables, Y1 and 
Y2, indicating the interarrival time and the service 
time respectively. 

 These two random variables are strongly correlated 
with X, the waiting time in the queue. 

 Yj(1) and Yj(2), j=1,2 can be negatively correlated 
by simply using the compliment of the pseudo-
random numbers used in the first run. 
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Implementing technique

 Simulate the single server queue, and let  , x1 
(1), x2

(1), 
..., xn

(1) be n i.i.d observations of X.  (
 Re-run the simulation, thus replicating the results, 

using pseudo-random numbers (ri,vi)=(1-r,1-vi). Let  
x1 

(2), x2
(2), ..., xn

(2)  be realization of X. Construct the 
interval estimate of E(X) using random variable z as 
described above.

 Obviously, the correlation between the two samples of 
observations is as good as the correlation between Y1j 
and Yj2, j=1,2.

Independent and identically distributed
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 implemented in simulation of an M/M/1 queue 

 The random variable X is the time a customer spends in the system 

 The i.i.d. observations of X were obtained by sampling every 10th 
customer. 

 Using the antithetic variates technique, we obtained a confidence interval 
of 13.52±1.76 

 antithetic variates techniques were employed using two sets of 
observations each of size equal to 300, i.e., a total of 600 observations. 
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Implementing technique
cont..d

 Simulate the single server queue, and let  , x1 
(1), x2

(1), 
..., xn

(1) be n i.i.d observations of X.  (
 Re-run the simulation, thus replicating the results, 

using pseudo-random numbers (ri,vi)=(1-r,1-vi). Let  
x1 

(2), x2
(2), ..., xn

(2)  be realization of X. Construct the 
interval estimate of E(X) using random variable z as 
described above.

 Obviously, the correlation between the two samples of 
observations is as good as the correlation between Y1j 
and Yj2, j=1,2.
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

Implementing technique
cont..d
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 In the above example, the antithetic variates technique worked 
quite well. However, this should not be construed that this 
method always works well. 

 In particular, in the following example, an M/M/2 queuing 
system was simulated 

Implementing technique
cont..d
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

Implementing technique
cont..d
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The control variates technique 

 This method is otherwise known as the method of 
Concomitant Information. 

 Let X be an endogenously created random variable 
whose mean we wish to estimate. 

 Let Y be another endogenously created random 
variable whose mean is known in advance  known 
as the control variable.

 Random variable Y is strongly correlated with X. 
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The control variates technique 
cont..d
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Do more…


