
Intersystem Communications

Email:begna19mrblgo@gmail.com
visit: https://begnafrique.wordpress.com/

Chapter 01

6/30/2019 Integrative Programming and Technologies 1

https://begnafrique.wordpress.com/

Outlines
 Architectures for integrating systems
 Web Services and Middleware
 Network Programming
 Message and queuing services
 Low level data communications

6/30/2019 Integrative Programming and Technologies 2

 In ordinary uniprocessor system there is one processor and one memory unit.

 The operation of this computer is sequential.

 The performance of single processor system is limited by the underlying
fabrication technology.

Solution ?
 Distributed computing has become very popular as it provides a means to

overcome the limitations imposed by sequential computers.
 The means for communication among processors, memory modules and other

devices of a parallel computer is the Interconnection Network.

Intersystem Communication..

6/30/2019 Integrative Programming and Technologies 3

Intersystem communication is used in distributed
computing.
A distributed system is basically a computer network.

A distributed system relies entirely on the underlying
computer network for the communication of data and
control information between the nodes of which they are
composed

Intersystem Communication..

6/30/2019

Integrative Programming and Technologies

4

A distributed system is a collection of independent
computers that appears to its users as a single coherent
system.
This definition has several important aspects.

The first one is that a distributed system consists of
components (i.e., computers) that are autonomous.
A second aspect is that users (be they people or
programs) think they are dealing with a single system.

This means that one way or the other the autonomous
components need to collaborate.

Intersystem Communication..

6/30/2019

Integrative Programming and Technologies

5

In order to support heterogeneous computers and
networks while offering a single-system view, distributed
systems are often organized by means of a layer of
software-that is, logically placed between a higher-level
layer consisting of users and applications, and a layer
underneath consisting of operating systems and basic
communication facilities.

Accordingly, such a distributed system is sometimes called
middleware.

Intersystem Communication..

6/30/2019

Integrative Programming and Technologies

6

Intersystem Communication..

6/30/2019

Integrative Programming and Technologies

7

Distributed systems are often complex pieces of software of
which the components are by definition dispersed across
multiple machines.
To master their complexity, it is crucial that these systems
are properly organized.
There are different ways on how to view the organization of
a distributed system,

The organization of distributed systems is mostly about
the software components that constitute the system.

Architectures for Integrating Systems

6/30/2019

Integrative Programming and Technologies

8

 The software architectures tell us how the various software components are
to be organized and how they should interact.

 The actual realization of a distributed system requires that we instantiate and
place software components on real machines.

 There are many different choices that can be made in doing so.

Architectures for Integrating Systems..

6/30/2019

Integrative Programming and Technologies

9

It is the distributed version of Microsoft's COM technology which allows
the creation and use of binary objects/components from languages other
than the one they were originally written in.

It currently supports Java(J++),C++, Visual Basic, JScript, and VBScript.

DCOM works over the network by using proxy's and stubs.

DCOM as DS technology Solution

10

6/30/2019

Integrative Programming and Technologies

10

When the client instantiates a component whose registry entry suggests
that it resides outside the process space

DCOM creates a wrapper for the component and hands the client a
pointer to the wrapper.
This wrapper, called a proxy, simply marshals methods calls and routes
them across the network.

On the other end, DCOM creates another wrapper, called a stub, which
marshals methods calls and routes them to an instance of the
component.

DCOM as DS technology Solution

11

6/30/2019

Integrative Programming and Technologies

11

DCOM servers object can support multiple interfaces each
representing a different behavior of the object.
A DCOM client calls into the exposed methods of a DCOM
server by acquiring a pointer to one of the server object's
interfaces.
The client object can the invoke the server object's exposed
methods through the acquired interface pointer as if the
server object resided in the client's address space.

DCOM as DS technology Solution

12

6/30/2019

Integrative Programming and Technologies

12

 All DCOM components and interfaces must inherit from
IUnknown, the base DCOM interface.

 IUnknown consists of the methods AddRef(), Release() and
QueryInterface().

 AddRef() and Release() are used to for reference counting and
memory management.

 Essentially, when an object's reference count becomes zero, it
must self-destruct.

 In COM, the request and responses are delivered via the
Lightweight Remote Procedure Calls (LRPC).

DCOM as DS technology Solution

13

6/30/2019 Integrative Programming and Technologies 13

DCOM as DS technology Solution

14

6/30/2019
Integrative Programming and Technologies

14

Consider the following program organization:

RMI as Distributed technology solution

15

6/30/2019

Integrative Programming and Technologies

15

Java RMI is a mechanism that allows one to invoke a
method on an object that exists in another address space.

The other address space could be on the same machine or a
different one.
The RMI mechanism is basically an object-oriented RPC
mechanism.
Java/RMI relies on a protocol called the Java Remote
Method Protocol (JRMP).

RMI as Distributed technology solution

16

6/30/2019

Integrative Programming and Technologies

16

Java relies heavily on Java Object Serialization, which allows
objects to be marshaled (or transmitted) as a stream.

Since Java Object Serialization is specific to Java, both the
Java/RMI server object and the client object have to be
written in Java

RMI as Distributed technology solution

17

6/30/2019 Integrative Programming and Technologies 17

Each Java/RMI Server object defines an interface, which can
be used to access the server object outside of the current
Java Virtual Machine (JVM) and on another machine's JVM.

The interface exposes a set of methods, which are
indicative of the services offered by the server object.
For a client to locate a server object for the first time, RMI
depends on a naming mechanism called an RMIRegistry
that runs on the Server machine and holds information
about available Server Objects.

RMI as Distributed technology solution

18

6/30/2019

Integrative Programming and Technologies

18

A Java/RMI client acquires an object reference to a Java/RMI
server object by doing a lookup for a Server Object reference and
invokes methods on the Server Object as if the Java/RMI server
object resided in the client's address space.
Java/RMI server objects are named using URLs and for a client
to acquire a server object reference, it should specify the URL of
the server object as you would with the URL to a HTML page.

RMI as Distributed technology solution

19

6/30/2019 Integrative Programming and Technologies 19

It is composed of three parts:
The Stub/Skeleton Layer: The stub/skeleton layer
provides the static client stubs and server skeletons.
The Remote Reference Layer: This layer handles the
object references and management.
The Transport Layer: This layer is simply the Internet
transport protocol used.

Sun provides and implementation that uses TCP/IP; but
someone else could replace it with UDP if he wishes.

RMI as Distributed technology solution

20

6/30/2019

Integrative Programming and Technologies

20

RMI as Distributed technology solution

21

6/30/2019

Integrative Programming and Technologies

21

CORBA is a software standard that is defined and
maintained by the Object Management Group (OMG).

CORBA is based on the Request-Response architecture.

It consists of a standard framework for developing and
maintaining distributed software systems.

CORBA is to allow interoperability between objects on
distributed systems.

CORBA as Distributed technology solution

22

6/30/2019 Integrative Programming and Technologies 22

 CORBA works by allowing clients and servers to communicate without
worrying about the network protocol and other communication
aspects.

 There is an object implementation on the server, which the client
requests to execute.

 The client and the server object implementation do not have any
restrictions on the address space,

 For example the client and the server can exist in the same address
space, or can be located in separate address spaces on the same node,
or can be located on separate nodes altogether.

CORBA as Distributed technology solution

23

6/30/2019 Integrative Programming and Technologies 23

CORBA objects are essentially object that supports the
CORBA::

Object IDL interface and
The Remote references are called Object References.

There is a specification of the CORBA IDL Language and
how it is mapped with other languages.
It essentially provides a means for the interface
definitions.
The Proxy or a local representative for the client side is
called the IDL stub; the server-side proxy is the IDL
skeleton.

CORBA as Distributed technology solution

24

6/30/2019 Integrative Programming and Technologies 24

The proxy represents an object created on the client side,
which is used for more functionality like support

for Dynamic invocation.
For marshaling the request and the response, the
information is delivered in a canonical format defined
by the IIOP protocol used for CORBA interoperability on
the Internet.

CORBA as Distributed technology solution

25

6/30/2019 Integrative Programming and Technologies 25

IDL stub makes use of dynamic invocation interface for
marshaling on the client side.
Similarly on the server side, IDL Skeletons use the
Dynamic Skeleton Interface for unmarshalling the
information.
The request (response) can also contain Object
Reference as parameters; remote object can be passed
by reference.

CORBA as Distributed technology solution

26

6/30/2019 Integrative Programming and Technologies 26

The client does not need to know where the server is;
the client can work just as if the object it is working
with exists in the same process space.

A CORBA implementation achieves this by creating
client stubs and server skeletons; they marshal and
unmarshal requests and responses.

CORBA as Distributed technology solution

27

6/30/2019 Integrative Programming and Technologies 27

CORBA as Distributed technology solution

October 27, 2016 28

Both server and
client are processes
executing on an OS.
The server listens on
a TCP socket, and the
client opens a TCP
connection to the
remote server. The
“language” spoken
over this TCP
connection is IIOP.6/30/2019 Integrative Programming and Technologies 28

The Object Request Broker (ORB) provides the “glue”
between the client and server.

The Object Request Broker (ORB) transmits operation
invocations from a client to a server that can be located
in the same address space, in different address spaces
on the same computer, or on different computers.

Object Request Broker

29

6/30/2019 Integrative Programming and Technologies 29

On the client side the invocation adapter enables an
operation to be generated and invoked.
In a similar way, the object adapter on the server side
allows an invocation to be delivered to the object
implementation.
The task of the ORB is to accept operations at the
invocation adapter and to forward and deliver them to
the appropriate object adapter.

Invocation and Object Adapters

30

6/30/2019 Integrative Programming and Technologies 30

 In-order for the objects to make requests and receive
response from other objects remotely of locally, Object
request broker (ORB) is used, which is the object bus.

 Using this bus, the client is not aware of the
mechanisms used to communicate with, activate, or
store the server objects.

 There is predefined language called the Interface
Definition Language, which achieves this.

IDL

31

6/30/2019 Integrative Programming and Technologies 31

The Interface Description Language (IDL) is a purely
declarative language that specifies the interface that an
object should implement and a client must use.
In other word, it is used to specify object interfaces
independently of a specific programming language.
The IDL file is used to generate stub files for the client and
server;
It marshals parameters and sends them to the ORB.
Thus, the client and server do not need to know location
information; allowing the programmer to concentrate on
the object implementation, not network handling.

IDL

32

6/30/2019 Integrative Programming and Technologies 32

CORBA as Distributed technology solution

33

6/30/2019 Integrative Programming and Technologies 33

34

Summary

6/30/2019 Integrative Programming and Technologies 34

Example - Amazon / Searching for books

Web Services -Introduction

35

6/30/2019 Integrative Programming and Technologies 35

Amazon Search as a Web Service

Web Services -Introduction

36

e.g., http://webservices.amazon.com/AWSECommerceService/AWSECommerceService.wsdl

6/30/2019 Integrative Programming and Technologies 36

Amazon as a Web Service (App Integration)

Web Services -Introduction

37

6/30/2019 Integrative Programming and Technologies 37

What is Web Service ?

The Web is an immensely scalable information space filled with
interconnected resources.

A Web resource is any type of named information object— such as
a word processing document, a digital picture, a Web page, an e-
mail account, or an application—that’s accessible through the Web.

Web Services -Introduction

38

6/30/2019 Integrative Programming and Technologies 38

All resources on the Web are connected via the Internet,
and you access Web resources using standard Internet

protocols.

The Web is pervasive and provides universal
connectivity.

A service is an application that exposes its functionality
through an application programming interface (API).

In other words, a service is a resource that is designed
to be consumed by software rather than by humans.

Web Services -Introduction

39

6/30/2019 Integrative Programming and Technologies 39

Web service is an application that provides a Web API.

An API supports application-to-application
communication.

A Web API is an API that lets the applications
communicate using XML and the Web.

Web services use the Web to perform application-to-
application integration.

40

Web Services -Introduction

6/30/2019 Integrative Programming and Technologies 40

Key concept: a Web service is a software component designed to support interoperable
machine-to-machine interaction over a network.

Allow applications to share data and invoke capabilities from other applications
Key facts:

No need to consider how the ’other’ applications were built, what operating system
or platform they run on
A standardized way of application-to-application communication based on XML
open standards (ie., SOAP, WSDL and UDDI) over an Internet proto col backbone.

Unlike traditional client/server models, web services do not require
GUI, HTML or browser.

41

Web Services -Introduction

6/30/2019 Integrative Programming and Technologies 41

Web service exhibits the following defining characteristics:
A Web service is a Web resource. You access a Web
service using platform-independent and language-
neutral Web protocols.

A Web service provides an interface—a Web API—that
can be called from another program.
A Web service is typically registered and can be located
through a Web service registry.

Web services support loosely coupled connections
between systems.

42

Web Services -Introduction

6/30/2019 Integrative Programming and Technologies 42

Web services commercial frameworks
Microsoft

(http://msdn.microsoft.com/en-us/library/ms950421.aspx)

IBM
(http://www.ibm.com/software/solutions/soa)

Oracle
(http://www.oracle.com/us/technologies/soa/index.html)

Hewlett Packard
(http://h71028.www7.hp.com/enterprise/w1/en/technologies/soa-overview.html)

and more ...

43

Web Services -Introduction

6/30/2019 Integrative Programming and Technologies 43

http://msdn.microsoft.com/en-us/library/ms950421.aspx
http://www.ibm.com/software/solutions/soa
http://www.oracle.com/us/technologies/soa/index.html
http://h71028.www7.hp.com/enterprise/w1/en/technologies/soa-overview.html

Web Services Conceptual Architecture (by IBM)

Basic Web Services Architecture

44

Web Services -Introduction

6/30/2019 Integrative Programming and Technologies 44

Web Services Conceptual Architecture (by IBM)
Web Services Component

Service
Service Description

Three Roles:
service provider: develops an electronic service and registers its
description at a publicly accessible service registry.
service registry: store/manage web services details
service requestor: query the registry to find an electronic service
that meets his or her requirements.
A binding occurs between the service provider and the service
requestor.

45

Web Services -Introduction

6/30/2019 Integrative Programming and Technologies 45

Why Web Services?

Integrate applications

 Web services communicate using XML and Web protocols, Which are pervasive, work

both internally and across the Internet, and support heterogeneous interoperability
Web service exhibits the following defining characteristics:
 A Web service is a Web resource. You access a Web service using platform-

independent and language-neutral Web protocols.
 A Web service provides an interface Web API-that can be called from another

program.
 A Web service is typically registered and can be located through a Web service

registry.
Web services support loosely coupled connections between systems.

6/30/2019 Integrative Programming and Technologies 46

Network Programming I
The Client-Server Communication Model

 At a basic level, network-based systems consist of a server , client ,
and a media for communication.

 A computer running a program that makes a request for services
is called client machine.

 A computer running a program that offerrs requested services
from one or more clients is called server machine.

 The media for communication can be wired or wireless network.

 This client-server interaction, also known as request-reply
behavior.

6/30/2019 Integrative Programming and Technologies 47

Network Programming II
The Client-Server Communication Model

Generally, programs running on client machines make requests to a
program (often called as server program) running on a server machine.

6/30/2019 Integrative Programming and Technologies 48

Network Programming III
The Client-Server Communication Model

 They involve networking services provided by the transport layer,which is part
of the Internet software stack, often called TCP/IP (Transport Control
Protocol/Internet Protocol) stack.

 The transport layer comprises two types of protocols, TCP (Transport Control
Protocol) and UDP (User Datagram Protocol).

 The most widely used programming interfaces for these protocols are sockets.
 TCP is a connection-oriented protocol that provides a reliable flow of data

between two computers.
 Example applications that use such services are HTTP, FTP, and Telnet.
 UDP is a protocol that sends independent packets of data, called datagrams ,

from one computer to another with no guarantees about arrival and
sequencing.

6/30/2019 Integrative Programming and Technologies 49

Network Programming IV
The Client-Server Communication Model

 Example applications that use such services include Clock server and Ping.

 The TCP and UDP protocols use ports to map incoming data to a particular process running on
a computer.

 Port is represented by a positive (16-bit) integer value.

 Some ports have been reserved to support common/well known services:

-FTP 21/tcp

-TELNET 23/tcp

-SMTP 25/tcp

-Login 513/tcp

-http 80/tcp,udp

-https 443/tcp,udp

 User-level process/services generally use port number value 1024.
6/30/2019 Integrative Programming and Technologies 50

Network Programming V
The Client-Server Communication Model

Figure: TCP/UDP mapping of incoming packets to appropriate
port/process

6/30/2019 Integrative Programming and Technologies 51

Network Programming VI
The Client-Server Communication Model

Hosts Identification and Service Ports
 Every computer on the Internet is identified by a unique, 4-byte IP

address.
 This is typically written in dotted quad format like 128.250.25.158

where each byte is an unsigned value between 0 and 255.
 This representation is clearly not user-friendly because it does not

tell us anything about the content and then it is difficult to
remember.

 Hence, IP addresses are mapped to names like www.buyya.com or
www.google.com, which are easier to remember.

 Internet supports name servers that translate these names to IP
addresses.

6/30/2019 Integrative Programming and Technologies 52

http://www.buyya.com/

Network Programming VII
The Client-Server Communication Model

 In general, each computer only has one Internet address.

 However, computers often need to communicate and provide more than one
type of service or to talk to multiple hosts/computers at a time.

 For example, there may be multiple ftp sessions, web connections, and chat
programs all running at the same time.

 To distinguish these services, a concept of ports, a logical access point,
represented by a 16-bit integer number is used.

 That means, each service ordered by a computer is uniquely identified by a
port number.

 Each Internet packet contains both the destination host address and the port
number on that host to which the message/request has to be delivered.

6/30/2019 Integrative Programming and Technologies 53

Network Programming VII
The Client-Server Communication Model

 The host computer dispatches the packets it receives to
programs by looking at the port numbers specified within the
packets.

 That is, IP address can be thought of as a house address when
a letter is sent via post snail mail and port number as the
name of a specific individual to whom the letter has to be
delivered.

6/30/2019 Integrative Programming and Technologies 54

Network Programming VIII
The Client-Server Communication Model

Sockets and Socket-based Communication
 Sockets provide an interface for programming networks at the transport layer.
 Network communication using Sockets is very much similar to performing file

I/O.
 In fact, socket handle is treated like file handle.
 The streams used in file I/O operation are also applicable to socket-based I/O.
 Socket-based communication is independent of a programming language used

for implementing it.
 That means, a socket program written in Java language can communicate to a

program written in non Java (say C or C++) socket program.

6/30/2019 Integrative Programming and Technologies 55

Network Programming IX
The Client-Server Communication Model

 A server (program) runs on a specific computer and has a socket
that is bound to a specific port.

 The server listens to the socket for a client to make a connection
request.

 If everything goes well, the server accepts the connection.
 Upon acceptance, the server gets a new socket bound to a

different port.
 It needs a new socket (consequently a different port number) so

that it can continue to listen to the original socket for connection
requests while serving the connected client.

6/30/2019 Integrative Programming and Technologies 56

Network Programming X
The Client-Server Communication Model

Network Programming XI
The Client-Server Communication Model

Figure: Establishment of path for two-way communication between a client and server
Baessa Kajela (ADU) ADU,CET,IT www.adu.edu.et November 2, 2017 40 / 52

6/30/2019 Integrative Programming and Technologies 57

Message and queuing services I

 A message is information sent by a sender process to a receiver process.
 A message queue is a mechanism that allows a sender process and a receiver

process to exchange messages;
 The sender posts a message in the queue, and the receiver retrieves the message

from the queue.
 The senders and receivers of messages may communicate in a synchronous way

or in an asynchronous way.
 With a synchronous communication protocol, a receiver waits for a message

from a sender, i.e., it blocks until the message arrives.
 Whereas with an asynchronous communication protocol, the receiver continues

executing and is notified of the reception of a message when this one arrives.

6/30/2019 Integrative Programming and Technologies 58

Message and queuing services II

A message queuing system provides several facilities:
 creating messages, creating queues, initializing
 sender and receiver processes,
 providing a means to send and receive messages.
Several message queuing systems are proposed.

6/30/2019 Integrative Programming and Technologies 59

Message and queuing services III

Some are proprietary and others are open source.
 Oracle proposes Advanced Queuing for Oracle databases,
 Skype has Skytools PgQ for PostgreSQL a database
 IBM provides WebSphere MQ
 Microsoft has MSMQ
 Sun Microsystems defines Java Message Service (JMS) as a specification of a

Java standard for message queuing systems

 Open source message queuing systems include ActiveMQ, Jboss Messaging,
and JORAM

6/30/2019 Integrative Programming and Technologies 60

Message and queuing services IV

 It is a communications service that temporally decouples message sends
operations from message receive operations.

 The functionality enables applications to communicate even if those
applications are not executed concurrently.

 Applications send messages to a queue and/or receive messages from a
queue.

 The queue provides persistence of the messages, enabling them to survive
across application restarts.

 As such, this abstraction enables an application to send message even if the
receiving application is not executing or is unreachable due to a network
outage.

6/30/2019 Integrative Programming and Technologies 61

Message and queuing services V

Message Queuing enables the following message exchange patterns

between applications:

One-Way Messaging:
A source application sends messages to a destination application and
does not wait for the outcome of the message processing.

6/30/2019 Integrative Programming and Technologies 62

Message and queuing services VI

 The receiving application receives the request message and sends the response message to
a queue specified by the sender in the request message.

 The sending application receives the response message and correlates it to the original
request message.

 Broadcast:

 A source application sends messages that can be received by zero or more applications.

 This pattern is useful in implementing publish-and subscribe types of applications.

 The simplest Message Queuing deployment involves two applications and a single queue
that is accessible to both the applications.

 The queue is hosted and managed by a single queue manager.

 One application sends messages to the queue, and the other application receives the
messages from the same queue.

6/30/2019 Integrative Programming and Technologies 63

Message and queuing services VII

The sending application sends a message to the queue.
When the send operation is successful, the application proceeds with other work,
or terminates(1).
The receiving application subsequently receives the message asynchronously (2).
The message is removed from the queue.
6/30/2019 Integrative Programming and Technologies 64

MSMQ - Queue Manager

 Queues are hosted and managed by a queue manager that plays the queue server
role.

 The queue manager hosts and manages a set of local queues, acts as an
intermediary placeholder for storing and forwarding messages to their final
destinations, and interacts with the applications for sending and receiving
messages.

 The queue manager performs the following tasks:

 On the send side, the queue manager manages its queues, accepts messages from
the sending application, and optionally transfers messages to other queue
managers.

 If the messages are destined for a queue that the send-side queue manager hosts,
the messages are placed in that queue on the machine.

Message and queuing services VIII

6/30/2019 Integrative Programming and Technologies 65

Message and queuing services IX

 Alternatively, if the messages belong to a queue that is not hosted by the queue manager on the
send side, the messages are placed in an outgoing queue and subsequently transferred to the
destination queue manager.

 On the receive side, the queue manager manages its queues, accepts messages transferred from
other queue managers, and delivers messages to the receiving application.

 Optionally, there can be other queue managers between the send and the receive queue managers.

 This approach facilitates efficient message routing between the source and the destination queues.

 These interim queue managers store incoming messages and route them to the next hop so that
they can eventually reach the final destination queue.

 In other words: A sending application sends a message to a nearby queue manager.

 If the destination queue is hosted by the queue manager (a local queue), the queue manager stores
the message in the local queue.

6/30/2019 Integrative Programming and Technologies 66

Message and queuing services X
 Alternatively, if the destination queue is hosted by another queue manager on a different

machine, the queue manager places the message in an outgoing queue.

 In either case, the sending application can proceed to do other work.

 The queue manager asynchronously transfers the message from the outgoing queue to the
queue manager of the destination queue, optionally through interim queue managers for
routing the message.

 Subsequently, a receiving application reads the message from the destination queue.

6/30/2019 Integrative Programming and Technologies 67

Reading Assignment

 List commonly used low level data communications
protocols

 State conditions for when each protocol should be used

 Outline the protocol for one low level communications
protocol

6/30/2019 Integrative Programming and Technologies 68

