
Chapter 3-Integrative Coding

Email:begna19mrblgo@gmail.com
visit: https://begnafrique.wordpress.com/

https://begnafrique.wordpress.com/

Contents

Part 1: Design Patterns

Part 2: Interface

Part 3: Inheritance

Part 4:Versioning and version control

Design Patterns

What are Design Patterns
Designing is an art and it comes with the experience.

But there are some set of solutions already written by some of the
advanced and experienced developers while facing and solving similar
designing problems.

These solutions are known as Design Patterns.

The Design Patterns is the experience in designing the object oriented
code.

Design Patterns are general reusable solution to commonly occurring
problems.

Patterns are not complete code, but it can use as a template which can
be applied to a problem.

Design Patterns

What are Design Patterns

Patterns are re-usable; they can be applied to similar
kind of design problem regardless to any domain.

In other words, we can think of patterns as a formal
document which contains recurring design problems and
its solutions.

A pattern used in one practical context can be re-usable
in other contexts also.

Design Patterns

It is recurring solution to recurring problems in software
architecture.

It is a description or template for how to solve a problem that can
be used in many different situations.

A Lower level framework for structuring an application than
architectures (Sometimes, called micro-architecture).

Reusable collaborations that solve sub problems within an
application.

Why Design Patterns?

Design patterns support object-oriented reuse at a high level of
abstraction

Design patterns provide a “framework” that guides and constrains
object-oriented implementation

Design Patterns

Organizing of Design Patterns

Design patterns can be categorized in the following
categories:

Creational patterns : used to help make a system
independent of how its objects are created, composed
and represented.

Creational design patterns are used to design the
instantiation process of objects. The creational
pattern uses the inheritance to
vary the object creation.

Design Patterns

Structural patterns are concerned with how classes and
objects are organized and composed to build larger
structures.

Structural class patterns use inheritance to compose
interfaces or implementations

As a simple example, consider how multiple inheritance
mixes two or more classes into one. The result is a
class that combines the properties of its parent
classes. This pattern is particularly useful for making
independently developed class libraries work together.

.

Design Patterns

Organizing of Design Patterns
Design patterns can be categorized in the following
categories:

Behavioral patterns are used to deal with assignment
of responsibilities to objects and communication
between objects.

Behavioral patterns are concerned with algorithms
and the assignment of responsibilities between
objects.

Behavioral patterns describe not just patterns of
objects or classes but also the patterns of
communication between them.

Design Patterns

Design Patterns

Design Patterns

Example(Façade)

Facade:

Provides a unified interface to a set of interfaces in a
subsystem.

Façade defines a higher-level interface that makes the
subsystem easier to use.

This structural code demonstrates the Facade pattern
which provides a simplified and uniform interface to a
large subsystem of classes.

Interface

Application programming interface
Are sets of requirements that govern how one application can talk to
another

applications to share data and take actions on one another's behalf
without requiring developers to share all of their software's code

define exactly how a program will interact with the rest of the
software world—saving time, resources

Eg:- System-level APIs- cut and paste LibreOffice document into an
Excel spreadsheet

Eg:-FacebookAPIs- Facebook users sign into many apps and Web sites
using their Facebook ID

Eg:-Web APIs – games let players chat, post high scores and invite
friends to play via Face book, right there in the middle of a game

http://readwrite.com/2013/08/28/facebook-unity-sdk-3d-gaming

Inheritance

derive a new class based on an existing class, with modifications or
extensions

A subclass inherits all the variables and methods from its super
classes, including its immediate parent as well as all the ancestors

avoid duplication and reduce redundancy

Types of Inheritance

Simple , Multilevel, Multiple, hierarchical and Hybrid

Inheritance and Abstract class

Abstract Method:- a method with only signature (i.e., the method
name, the list of arguments and the return type) without
implementation (i.e., the method’s body).

use the keyword abstract to declare an abstract method

Inheritance

Abstract Class

A class containing one or more abstract methods is called an
abstract class.

must be declared with a class-modifier abstract

provides a template for further development

Notes:

An abstract method cannot be declared final, as final method cannot
be overridden.

An abstract method must be overridden in a descendent before it can
be used.

An abstract method cannot be private (which generates a compilation
error, because private method is not visible to the subclass and
thus cannot be overridden.

In Java, define a subclass using the keyword "extends", e.g.,

class MyApplet extends java.applet.Applet {.....}

class Cylinder extends Circle {......}

Inheritance

Inheritance example

Inheritance

Example for Abstract class and Inheritance

Inheritance

Abstract class and Inheritance
in Java

Shape.java

Abstract class and Inheritance in Java
Rectangel.java

Inheritance

Inheritance

Abstract class and Inheritance in Java
traingle.java

Chapter 4

Versioning and version control

Baessa K. (CSIF,CET)

Version control enables multiple people to simultaneously work on a
single project.
Each person edits his or her own copy of the files and chooses when to
share those changes with the rest of the team.
temporary or partial edits by one person do not interfere with another
person's work.
enables one person to use multiple computers to work on a project
integrates work done simultaneously by different team members
In rare cases, when two people make conflicting edits to the same line
of a file, then the version control system requests human assistance in
deciding what to do
Version control gives access to historical versions of the project

Versioning and version control

file:///E:/01HAWASSA/2015-16 1st sem/IPT/chapter5/Version control concepts and best practices.htm

Baessa K. (CSIF,CET) 22

If make a mistake, roll back to a previous version. reproduce and
understand a bug report on a past version of your software.
undo specific edits without losing all the work that was done in the
meanwhile.
For any part of a file, determine when, why, and by whom it was ever
edited.
Version control uses a repository (a database of changes) and a working
copy (checkout) where you do your work
working copy is your personal copy of all the files in the project.
edits to this copy, without affecting your teammates.

commit your changes to a repository
repository is database of all the edits to, and/or historical versions
(snapshots) of, your project
update your working copy to incorporate any new edits or versions

Versioning and version control

Two varieties of version control: centralized (one repository) and
distributed (multiple repositories)

Some popular version control systems are Mercurial (distributed), Git
(distributed), and Subversion (centralized).

The main difference between centralized and distributed version control is
the number of repositories.

In centralized version control, there is just one repository, and in
distributed version control, there are multiple repositories.

Baessa K. (CSIF,CET) 23

Versioning and version control

Read more..

Thank you

